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Abstract 
 

In this study rhizosphere soil of corn at a milk stage was collected to investigate characteristic metabolites and their potential 

functions. Total nitrogen, organic matters, ammonium nitrogen, pH values, available phosphorus and potassium were 

determined by semimicro-Kjeldahl method, potassium dichromate (external heating) method, indophenol blue colorimetric 

method, potentiometry, NaHCO3 leaching-molybdenum-antimony colorimetric method and NH4OAc leaching-flame 

spectrometry, respectively. In addition, UPLC-Q/TOF-MS was adopted for non-targeted metabolomic analysis. As revealed by 

results, the total nitrogen contents in soils collected from Dongchuang (i.e., DCMRS for short) 0.67 ± 0.14 mg/kg lower than 

from Fumin (i.e., FMMRS for short); moreover, both DCMRS and FMMRS were acid soils. DCMRS contains higher levels 

of AN (Ammonium nitrogen), SOC (Soil organic carbon), and AP (Available phosphorus) than FMMRS. The amount of TN 

(Total nitrogen) contained in FMMRS soil was 2.410 ± 0.422 mg/kg, which is higher than DCMRS. All data derived from 

UPLC-Q/TOF-MS met the corresponding requirements for further analysis. Metabolites such as 2-methyl-1-propylamine, 

gamma-butyrolactone and 3-methyl-1-butylamine were detected in DCMRS and FMMRS samples. Several pathways were 

included, such as lipid metabolism, xenobiotics biodegradation and metabolism, terpenoids and polyketides, and amino acid 

metabolism. Through comparison of FMMRS and DCMRS, metabolic pathways associated with nitrogen, carbon, and 

antibiotic metabolism including iron transport were significantly different between them. Taken together, FMMRS is more 

fertile, less acidic, and higher in nitrogen than DCMRS. © 2021 Friends Science Publishers 

 

Keywords: Corn; Red soil; Rhizosphere soil; Untargeted metabolomics 

 

Introduction 
 

Corn (Zea mays L.) is a crop extensively planted all over the 

world, serving as raw materials of fodder, grains and energy 

(Byrt et al. 2011). Compared with rice, wheat and other 

food crops, corn is better in drought, cold, barren tolerance 

and excellent environmental adaptability. Corn is an 

excellent food crop with a high nutritional value. It is an 

important source of feed in animal husbandry, aquaculture, 

etc., and also one of the indispensable raw materials for food, 

medical and health, light industry, chemical industry, etc. 

(Byrt et al. 2011; Ma 2019). It plays an important role in 

ensuring national food security. 500 g of corn kernels 

contain 365 g of carbohydrates, which is slightly lower than 

rice; 21.5 g fat, more than any other cereal crops; 42.5 g 

protein, second to millet only; higher vitamin B than other 

crops (Chen et al. 2004; Ou 2016). Corn also contains more 

cellulose. As an important industrial raw material, more than 

500 kinds of industrial products have been made directly or 

indirectly from corn kernels and by-products (Ge et al. 2017; 

Miao 2018; Wang 2018). The main product of modern corn 

industry is corn starch, which is widely used in food, 

medicine, textile and other industrial fields (Liu 2014; Lu et 

al. 2018; Tong 2019). Glucose, liquor, beer, acetone and so 

on can be made from corn seeds (Wang 2016; Wang and 

Wang 2016). Corn stalks can be used to make fiberboard, 
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paper, rayon, electrical insulation and chemical rubber plate. 

Besides, corn has a wide range of applications in medicine. 

For example, corn starch is an important raw material to 

produce penicillin, streptomycin, aureomycin and other 

antibiotics. Corn has high yield and wide use, and has high 

economic value as food, feed, industrial and pharmaceutical 

raw materials. In China, cultivated area of corns ranks only 

second to wheat and paddy rice. Located in Southwest 

China, Yunnan is one of the provinces where corns are 

introduced at the earliest (Huang 2012). According to 

statistics, the cultivated area and yield of corn in Yunnan 

rank first and second, respectively. For instance, the 

cultivated area of corn reached 1.7177 million hectares in 

2016; and the yield of the same year was up to 9.196 million 

tons (Li et al. 2018). As corns are extremely rich, cheap, 

easy to obtain, strongly environment adaptable, and also 

have many biological activities, such as anti-oxidation, anti-

tumor, immunomodulation and bacteriostasis, etc., it has a 

broad development and application prospect (Yang et al. 

2019). 

As a major medium in which crops are planted, soil 

contains not only nutrients required by growth of crops, but 

also substances (e.g., plant hormones, amino acid and 

antibiotics) secreted by soil microbials and secretions (e.g., 

polysaccharose and amino acids) (Kuang et al. 2003). All 

these substances have certain influences on metabolism of 

soil microbials and plants. Soil resources are precious for 

human survival, and soil fertility is its essential attribute 

(Wang and Fu 2007; Pang 2009; Huang et al. 2017). Soil 

fertility is an indicator of the ability of the soil to provide 

various nutrients required for crop growth. It is a 

comprehensive performance of various basic soil properties 

and differentiates the soil from soil parent materials and 

other natural bodies. The material basis of soil proves a 

natural resource and means of agricultural production 

(Xiong 2001; Huang and Sun 2006; Marschner and Rengel 

2007; Lazcano 2011). Soil fertility is the basic property and 

essential characteristic indicating the ability of soil to supply 

and coordinate nutrients, water, air and heat for plant growth, 

and the comprehensive response of soil physical, chemical 

and biological properties (Liu 2010; Buckland and Grime 

2010; Ling-An et al. 2011; Zhao and Bai 2013). The 

evaluation of soil fertility contains qualitative and 

quantitative methods. Qualitative descriptions of soil 

fertility quality are relatively simple, such as intuitive 

description of how the soil looks, feels and smells. While 

the quantitative method refers to the calculation of the 

"score" of soil quality according to the quantitative soil 

properties, and the best soil usually gets the highest score 

(Song 2011). Soil fertility index includes soil chemical, 

physical, biological and environmental condition index, and 

all the factors are expressed in numerical value. In this way, 

a series of scores will be involved in soil fertility evaluation. 

It is difficult to find the internal relationship between each 

index from these data, which is difficult to achieve by 

manual processing. Therefore, the comprehensive 

evaluation of soil fertility must be carried out from the 

perspective of multiple factors by means of mathematical 

analysis (Luo et al. 2002; Yang et al. 2016). Different soil 

types correspond to different vegetational forms and 

microbial compositions. High throughput testing and data 

processing as its approaches, mass spectrometry (MS) and 

nuclear magnetic resonance (NMR) as its analytical 

platforms, and information modeling and system integration 

as its objectives. At present, metabolomics has become one 

of the powerful research tools (Ram et al. 2005; Baker 2011; 

Geyer 2013; Suthar et al. 2013). Ultra-high Performance 

Liquid Chromatography-Quadrupole-Time-of-Flight/Mass 

Spectrometry (UPLC/Q-TOF-MS) is a chromatographic 

separation system that uses Ultra-high Performance Liquid 

Chromatography (UPLC) as a chromatographic separation 

system. TOF-MS is a mass spectrometry technology formed 

by series analyzers (Zhang et al. 2017). UPLC/Q-TOF-MS 

is one of the most effective methods for multi-component 

analysis and identification of complex matrices in recent 

years (Lacina et al. 2010). Compared with traditional high-

performance liquid chromatography (High Performance 

Liquid Chromatography, HPLC), the speed, sensitivity and 

resolution of UPLC are 9 times, 3 times and 1.7 times 

higher respectively (Wren 2005; Lucie et al. 2006). Q-TOF-

MS tandem technology is an important breakthrough in 

mass spectrometry technology. It has the advantages of high 

sensitivity, high selectivity, multi-stage mass spectrometry, 

and high information acquisition speed. Therefore, the 

UPLC/Q-TOF-MS combination technology can effectively 

solve the problems of complex composition and quantitative 

difficulties in soil composition analysis, and can analyze the 

metabolites in the soil quickly, accurately, comprehensively, 

and reliably. For the past few years, metabolomics 

techniques have been widely applied in the research of soil. 

It is also increasingly combined with other system biology 

technology, such as proteomics, transcriptomics and 

genomics (Chen et al. 2013; Mandal and Singh 2013). MS 

is deemed as an analytical method dependent on mass-to-

charge ratio determination for ions. Thanks to its sensitivity 

and specificity, MS gradually surmounts NMR and becomes 

the most powerful tool for qualitative and quantitative 

analysis on metabolites in metabolomics-related 

investigations (Dunn and Ellis 2005; Griffiths and Wang 

2009) Since red soils are extensively distributed in Yunnan 

Province (Zhou 1983) corns in Yunnan are mostly planted in 

red soils. Moreover, red soils with high viscidity contain 

metallic oxides such as iron and aluminum. Being highly 

acidic, red soils also contain a few amounts of organic 

matters (Huang 2012; Zhao et al. 2019). 

In this paper high performance liquid chromatography/ 

tandem high-resolution mass spectrometry was performed to 

test metabolome of rhizosphere soils of corn at milk stage in 

Dongchuan and Fumin regions. In combination with bio-

information analysis, MS data were interpreted for presenting 

metabolites in such soils and providing references for 

improvement of soils where corns are planted in both regions. 
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Materials and Methods 
 

Sample collection 

 

Dongchuang is located at the northeastern part of Yunnan, 

Fumin, as a county, is situated in the northeast of central 

Yunnan. Being 200 km apart, both regions have a 

subtropical monsoon plateau climate. Rhizosphere soils of 

corns at a milking stage were sampled from red soils in 

Dongchuang District and Fumin County of Yunnan 

Province. While those collected in Dongchuan were labeled 

as DCMRS, those collected in Fumin were labeled as 

FMMRS. Corn plants that grow well were collected, of 

which the roots about 5 cm below the surface layer were cut 

off, with soils attached. After which, they were put in a 

preservation box at 4°C and brought back to the laboratory. 

Totally, 6 soil samples were gathered in Dongchuang and 

Fumin, respectively. On an ultra-clean bench, excess soils 

were shaken off (Riley and Barber 1970; Hui et al. 2016) 

and the soils still attached on the roots were collected. 

Subsequently, impurities (including plant residues and 

fibrous root systems) in the soils were removed. Then, each 

soil sample was further equally divided into two portions, 

viz. one was stored at 4°C temporarily and used for general 

analysis on soil compositions, the other portion was stored 

at -80°C and used for non-targeted metabolomic analysis. 

 

Analysis soils physico-chemical properties 

 

Soil pre-treatment was carried out according to requirements 

in determination of total nitrogen, organic matters, 

ammonium nitrogen, pH, available phosphorus and available 

potassium. To be specific, the method proposed by (Li et al. 

2018)
 
in Tropical Forestry was adopted to implement soil 

determination. However, a semi-micro Kjeldahl method was 

selected for total nitrogen determination. The organic matter 

content in soils was measured by the potassium dichromate 

(external heating) method. The contents of available 

phosphorus and potassium were determined by the NaHCO3 

(0.5 mol/L) leaching-molybdenum-antimony colorimetric 

method and NH4OAc (1.0 mol/L) leaching-flame spectrometry. 

By following Li (2011), the potentiometric method was 

utilized to measure the soil pH, in which water–soil ratio was 

set to 2.5:1. At last, ammonium nitrogen in soils was 

determined by the indophenol blue colorimetric method. It 

should be noted that each test was repeated for three times. 

 

Metabolite leaching 

 

The collected samples were thawed on ice, and metabolites 

were extracted with 50% methanol buffer. Briefly, 20 μL of 

sample was extracted with 120 μL of precooled 50% 

methanol, vortexed for 1 min, and incubated at room 

temperature for 10 min. Then, the extraction mixture was 

stored overnight at -20°C, followed by centrifugation at 

4,000 g for 20 min. After which, the supernatants were 

transferred into new 96-well plates, stored at -80°C prior to 

the LC-MS analysis. In addition, pooled QC samples were 

also prepared by mixing 10 μL of each extraction mixture. 

 

LC/MS analysis 

 

All samples were acquired by the LC-MS system according 

to machine orders. Firstly, all chromatographic separations 

were performed using an ultra-performance liquid 

chromatography (UPLC) system (SCIEX, UK). An 

ACQUITY UPLC T3 column (100 mm*2.1 mm, 1.8 µm, 

Waters, U.K.) was used for the reversed phase separation. 

The column oven was maintained at 35°C. The flow rate 

was 0.4 mL/min. The mobile phase consisted of solvent A 

(water, 0.1% formic acid) and solvent B (Acetonitrile, 0.1% 

formic acid). Gradient elution conditions were set as follows: 

0~0.5 min, 5% B; 0.5~7 min, 5% to 100% B; 7~8 min, 

100% B; 8~8.1 min, 100 to 5% B; 8.1~10 min, 5% B. The 

injection volume for each sample was 4 µL. 

A high-resolution tandem mass spectrometer 

TripleTOF5600plus (SCIEX, UK) was used to detect 

metabolites eluted form the column. The Q-TOF was 

operated in both positive and negative ion modes. The 

curtain gas was set to 30 psi, Ion source gas1 was set to 60 

PSI, Ion source gas 2 was set to 60 PSI, and an interface 

heater temperature was to 650°C. For positive ion mode, the 

Ionspray voltage floating was set to 5000 V. For negative 

ion mode, the Ionspray voltage floating was set to -4500V. 

The mass spectrometry data were acquired in IDA mode. 

The TOF mass range was from 60 to 1200 Da. The survey 

scans were acquired in 150 ms and a total of 12 product ion 

scans were collected if exceeding a threshold of 100 counts 

per second (counts/s) with a 1+
 
charge-state. Total cycle 

time was fixed to 0.56 s. Four time bins were summed for 

each scan at a pulser frequency value of 11 kHz through 

monitoring of the 40 GHz multichannel TDC detector with 

four-anode/channel detection. Dynamic exclusion was 

operated for 4 s. During the acquisition, the mass accuracy 

was calibrated once every 20 samples. Furthermore, in order 

to evaluate the stability of the LC-MS during the whole 

acquisition process, a quality control sample (Pool of all 

samples) was acquired for every 10 samples. 

 

Information analysis 

 

The pretreatments of acquired MS data including peak 

picking, grouping, retention time correction, second peak 

grouping, and annotation of isotopes and adducts were 

performed using XCMS software (Want et al. 2006). 

LC−MS raw data files were converted into mzXML format 

and then processed by the XCMS, CAMERA and metaX 

(Wen et al. 2017) toolbox of R software. Each ion was 

identified by combining retention time (RT) and m/z data. 

Intensity of each peak was recorded and a three-dimensional 

matrix consisting of arbitrarily assigned peak indices 

(retention time-m/z pairs), sample names (observations) and 
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ion intensity information (variables) was generated. 

The online KEGG database was used to annotate the 

metabolites by matching the exact molecular mass data (m/z) 

of samples with those from database. If a mass difference 

between observed value and the database value was less than 

10 ppm, the metabolite would be annotated and the 

molecular formula of metabolites would further be identified 

and validated by the isotopic distribution measurements. An 

in-house fragment spectrum library of metabolites was also 

used to validate the metabolite identification. 

The intensity of peak data was further preprocessed by 

metaX. Those features that were detected in less than 50% 

of QC samples or 80% of biological samples were removed; 

the remaining peaks with missing values were imputed with 

the k-nearest neighbor algorithm to further improve the data 

quality. PCA was performed for outlier detection and batch 

effects evaluation based on the pre-processed dataset. 

Quality control-based robust LOESS signal correction was 

fitted to the QC data according to the order of injection to 

minimize the drift of signal intensity over time. In addition, 

the relative standard deviations of the metabolic features 

among all QC samples were calculated, and those > 30% 

were then removed. Before quantitative analysis on 

metabolites, quality control over their intensity was carried 

out to obtain quantitative information of high-quality ion 

peaks. Based on CV and hierarchical clustering of QC 

samples, data quality control can be achieved. 

 

Statistical analysis 

 

SPSS 20.0 (SPSS, Inc., Chicago, IL, USA) was used for data 

statistics and analysis, while GraphPad 8.0.2 was utilized to 

plot the relevant histograms. SIMCA_P 13.0 was used to 

implement principal component analysis (PCA) and 

orthogonal to partial least squares discriminant analysis 

(OPLS-DA). The R software was adopted to plot heat maps 

of metabolites and corresponding calculations were carried 

out by means of hierarchical clustering (HCL). As for distance 

computing, the Euclidean distance was adopted. It is worth 

noting that ward. D2 was used as the clustering method. 

Student t-tests were conducted to detect difference in 

metabolite concentration between 2 phenotypes. The P 

value was adjusted for multiple tests using an FDR 

(Benjamini–Hochberg). Supervised PLS-DA was conducted 

using metaX to discriminate the variables between groups. 

The VIP value was calculated. A VIP cut-off value of 1.0 

was used as a criterion to select important features. 

 

Results  
 

Soil physico-chemical properties 

 

Nitrogen, phosphorus and potassium are three major soil 

nutrients essential to plant growth. These three nutrients are 

not only applied to the most during agricultural production, 

but also consumed the most by plant growth. In this study, 

the contents of total nitrogen, ammonium nitrogen, soil organic 

carbon, available phosphorus and available potassium in 

DCMRS and FMMRS were measured (Table 1; Fig. 2A–D). 

Soil metabolic substances: The extracted metabolic 

substances were detected in both positive and negative ion 

modes using a high-resolution mass spectrometer. The total 

ion count and the number of substances annotated by 

primary and secondary mass spectrometry data can be found 

in positive and negative ion modes (Table 2). 

Detection control of metabolic substances: The only 

mass-to-charge ratio and chromatographic retention time 

were revealed in mass spectra of each metabolite. With the 

goal of controlling data quality, quality control over 

substances obtained by XCMS was provided, including total 

ion chromotogram, m/z-rt distribution of metabolites, m/z 

difference ranges generated by peak alignment of each 

substance, and rt difference ranges thus produced. As shown 

in the total ion chromotogram, the detected metabolites can 

be well isolated in the chromatographic condition set for this 

study. A great number of features were found when the 

retention time reached 1–1.5 min, 2–3.5 min or 8 min 

approximately. Among them, the number of features 

generated at a retention time of 2–3.5 min reached its peak. 

In terms of m/z, the maximum number of features was 

produced when it ranged between 200 and 400. Triple TOF 

5600, a high-resolution mass spectrometer (resolution: 30, 

000 and above), was utilized to detect the metabolites. 

Subsequently, alignment could be implemented with the 

help of XCMS. It turned out that the aligned m/z had a 

range of -0.015–0.015 and the aligned retention time all 

varied between -0.5 min and 0.5 min (Fig. 2A–D). 

 

Identification and quantification of metabolic substances 

 

Identification of metabolic substances: According to the 

detected substances, the primary m/z was matched in the 

KEGG database to acquire primary identification results. 

During primary identification, one m/z correspond to 

multiple metabolites. In order to produce more accurate 

identification results, secondary mass spectrogram of in-

house metabolites was compared with their secondary mass 

spectrometry data (Table 2). 

When several metabolites share identical chemical 

composition, a substance may still have different isomerides 

due to different types of element sorting. Considering that 

these isomerides have the same molecular weight, it is less 

likely to distinguish them based on mass spectra. For this 

reason, one substance may correspond to multiple possible 

metabolites during primary identification of substances. 

Hence, one-to-many statistics were made for metabolite 

identification, (Fig. 3A–B). 

After metabolite matching in the KEGG database, the 

metabolites were categorized (Fig. 3C–D). In line with 

global and overview maps of KEGG pathway level 2, the 

number of metabolites associated with lipid metabolism, 

xenobiotics biodegradation and metabolism, metabolism of 
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terpenoids and polyketides, and amino acid metabolism was 

above 160. More particularly, global and overview maps 

corresponded to probably the most metabolites. Regarding 

lipid metabolism, xenobiotics biodegradation and 

metabolism, metabolism of terpenoids and polyketides, and 

amino acid metabolism, the number of potential metabolites 

may range from 165 to 200. Among the first 20 KEGG 

pathways, there were metabolic pathways, biosynthesis of 

secondary metabolites, microbial metabolism in diverse 

environments, biosynthesis of antibiotics, degradation of 

aromatic compounds, arachidonic acid metabolism, and 

sesquiterpenoid and triterpenoid biosynthesis, etc. 

According to peak areas of DCMRS and FMMRS, the 

top first 20 metabolites are respectively listed in Table 3 and 

4, including their MZ, RT, peak areas, names and formulas. 

It could be found that such metabolites had similar rankings 

in both DCMRS and FMMRS. For example, 2-methyl-1-

propylamine had the largest peak area, followed by gamma-

butyrolactone and 3-methyl-1-butylamine successively. 

Except proline and valine, peaks areas of other metabolites 

in DCMRS were larger than those in FMMRS. 

Quantitative analysis on metabolic substances: 

Quantitative information of metabolites was derived from 

primary chromatographic peak areas of the substance. 

Moreover, no quantitative analysis was made on differences 

of the ions with CV > 30% for a reason they may vary 

substantially during the experiment. Quantitative statistical 

information of metabolites is listed in Table 5. The number 

of features extracted by XCMS was 4,189 in a positive ion 

mode or 3,622 in a negative ion mode. After the number of 

ions of a substance with a missing value < 80% in the 

sample or < 50% in the QC sample was acquired, the 

number of high quality features can be figured out, which 

was 3,622 in the positive ion mode or 2,389 in the negative 

ion mode. 

As shown in Fig. 4, quality control analysis was 

carried out prior to quantitative analysis on metabolites. In 

this figure, A stands for CV distribution of the sample. After 

normalization, such data were proven to be consistent with 

post-processing requirements. In addition, C represents 

distribution intensity evaluation of differential metabolites A 

Boxlot diagram was plotted after log 2 normalization of 

relevant intensity values, where log 2 (i.e., intensity) ranged 

from 10 to 12. B indicates that hierarchical clustering 

analysis on metabolite intensity of FMMRS and DCMRS 

was implemented by means of ward D2. At last, principal 

component analysis (PCA) was made on FMMRS, DCMRS 

and QC samples. More particularly, FMMRS, DCMRS and 

QC samples can be preferably differentiated in the PCA 

diagram. This indicates there was certain difference in 

differential metabolites between FMMRS and DCMRS. 

As shown in Fig. 5, mean intensity of metabolites 

undergoing secondary mass spectrum identification (A) is 

given. Here, bar length of the second ring represents diverse 

mean intensity of the metabolites in the mass spectrum. 

Moreover, mean intensity of which should be multiplied 

 
 

Fig. 1: A: Total nitrogen; B: Available phosphorus; C: Organic 

matters; D: Ammonium nitrogen; E: Available potassium; and, F: 

Soil pH. DCMRS refers to rhizosphere soil for corns at a milk 

stage in Dongchuan District, and FMMRS refers to rhizosphere 

soil for corns at a milk stage in Fumin County 

Table 1: Soil pH, and contents of total nitrogen, organic matters, ammonium nitrogen, available phosphorus and available potassium in 

soils (Mean ± SD) 

 
 TN (Total nitrogen) 

(mg/kg) 

AN (Ammonium 

nitrogen) (mg/kg) 

SOC (Soil organic carbon) 

(mg/kg) 

AP (Available 

phosphorus) (mg/kg) 

AK (Available potassium) 

(mg/kg) 

pH 

DCMRS 0.67 ± 0.14 39.22 ± 3.32 18.20 ± 0.89 51.31 ± 5.76 418.83 ± 17.92 5.79±0.43 
FMMRS 2.10 ± 0.42 19.493 ± 1.47 19.94 ± 2.27 23.93 ± 3.51 478.97 ± 12.93 6.77±0.76 
Notes: DCYRS stands for rhizosphere soil for corns in a seedling stage in Dongchuan District, DCMRS for rhizosphere soil for corns at a milk stage in Dongchuan District, and 

FMMRS for rhizosphere soil for corns at a milk stage in Fumin County 

 

Table 2: The total ion count and identification statistics of metabolites 

 
Mode All feature All annotated MS2 KEGG 

POS 4189 2477 85 1899 

NEG 2739 1230 34 957 
Notes: Mode: An ion mode in which the substance is detected under a mass spectrometer; POS: Positive ion mode; NEG: Negative ion mode; All feature: The number of 

substances extracted by the XCMS software; All annotated: The number of substances obtained by primary and secondary mass spectrometry data; and, MS2; The number of 

secondary ions identified, that is the number of substances that can be matched with both primary m/s and secondary fragment ions m/s of a substance in the database 
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with a log10 function. A bar stands for a type of metabolites 

color represents the type of metabolites. Fig. 5B shows the 

correlation of metabolites subjected to secondary mass 

spectrum identification. In this study, their correlation is 

embodied in different colors and various shades. For 

example, the darker the red is, the stronger their correlation 

will be; the darker the blue is, the weaker the correlation 

will be. In addition, two correlated areas are marked by a 

green triangle in dashed lines. Fig. 5C shows the intensity of 

metabolites for secondary mass spectrum identification, 

where x-axis refers to DCMRS, FMMRS and QC samples, 

while y-axis represents the type of metabolites. Each square 

in the figure represents a metabolite. Likewise, darker red 

corresponds to a stronger correlation, but darker blue 

represents a weaker correlation. 

 

Differential metabolite screening & differential 

metabolic pathway analysis 

 

Differential metabolite screening: In this paper, q-value 

Table 3: First 20 substances with maximum peak areas in DCMRS 
 

Number MZ RT Average peak area Name Formula 

1 228.1959023 3.04505 136183.8769 2-Methyl-1-propylamine C4H11N 

2 256.2631784 5.566516667 131652.8086 Gamma-Butyrolactone C4H6O2 

3 284.2949678 6.489666667 125826.1855 3-Methyl-1-butylamine C5H13N 
4 132.1009235 1.766241667 112990.2737 2,5-Dihydro-2,4-dimethyloxazole C5H9NO 

5 229.1405197 2.7169 87674.70663 (2R,3S)-2-methyl-3-propyloxirane C6H12O 

6 135.0796726 5.277983333 76720.33604 Triethylamine C6H15N 
7 228.1956866 6.213366667 57819.67183 Triethylamine C6H15N 

8 279.1587938 4.5003 57116.42804 Choline C5H14NO 

9 172.1328279 2.528366667 50148.55729 1-Piperidinecarboxaldehyde C6H11NO 
10 87.04354563 3.111133333 46848.60368 Proline C5H9NO2 

11 310.3105369 6.595866667 44256.53949 Valine C5H11NO2 

12 250.1773982 6.213366667 43742.21084 Indane C9H10 
13 136.0204317 6.441 36122.42364 Nicotinic acid C6H5NO2 

14 118.0852842 0.889216667 32412.89428 Malonic acid C3H4O4 

15 226.1799047 6.220416667 32183.90691 Malonic acid C3H4O4 
16 413.266458 7.251366667 31642.44589 Hypotaurine C2H7NO2S 

17 353.2299268 2.996966667 28868.39866 Dihydrothymine C5H8N2O2 

18 337.2349649 5.83 28080.3092 Pipecolate C6H11NO2 
19 540.5357826 6.34005 27069.31943 Isoleucine C6H13NO2 

20 149.0224496 4.50395 24963.68949 Leucine C6H13NO2 
 

 
 

Fig. 2: Metabolite detection control. A: Total ion chromotogram (TIC) of metabolites, where the overall mass spectrum signal strength of 

the sample is under control. In this map, x-axis represents time and the y-axis stands for sums of all ion intensity at each time point in the 

mass spectrogram; B: A mz-rt distribution diagram, where x-axis refers to the substance retention time, y-axis refers to m/z of the substance, 

each point in the diagram represents a substance; C: The m/z alignment ranges of metabolites; D: The rt alignment ranges of metabolites 
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was acquired after BH correction is conducted based on 

differential folds of univariate analysis and t-test. Moreover, 

the value of Variable Important for the Projection (VIP) was 

acquired through PLS-Discriminant Analysis (PLS-DA). 

The number of differential metabolites selected is shown in 

Fig. 6A. It can be seen that the number of up-regulated and 

down-regulated metabolites of FMMRS was 222 and 261, 

respectively (Fig. 6B). 

Fig. 6C shows the volcano plot of univariate statistical 

test evaluation. The green and red points stand for down-

Table 4: Top 20 substances with maximum peak areas in FMMRS 
 

Number MZ RT FMMRS Average peak area Metabolite Formula 

1 228.1959023 3.04505 134457.8221 2-Methyl-1-propylamine C4H11N 

2 256.2631784 5.566516667 127645.9067 Gamma-Butyrolactone C4H6O2 

3 284.2949678 6.489666667 123988.4382 3-Methyl-1-butylamine C5H13N 
4 132.1009235 1.766241667 86018.61235 2,5-Dihydro-2,4-dimethyloxazole C5H9NO 

5 229.1405197 2.7169 55237.28711 (2R,3S)-2-methyl-3-propyloxirane C6H12O 

6 135.0796726 5.277983333 54484.58411 Triethylamine C6H15N 
7 228.1956866 6.213366667 53744.10721 Triethylamine C6H15N 

8 279.1587938 4.5003 50242.79421 Choline C5H14NO 

9 172.1328279 2.528366667 49425.78368 1-Piperidinecarboxaldehyde C6H11NO 
10 87.04354563 3.111133333 48750.38422 Proline C5H9NO2 

11 310.3105369 6.595866667 44981.94301 Valine C5H11NO2 

12 250.1773982 6.213366667 40121.6433 Indane C9H10 
13 136.0204317 6.441 32067.15209 Nicotine acid C6H5NO2 

14 118.0852842 0.889216667 30676.72433 Malonic acid C3H4O4 

15 226.1799047 6.220416667 29604.93344 Malonic acid C3H4O4 
16 413.266458 7.251366667 27758.16764 Hypotaurine C2H7NO2S 

17 353.2299268 2.996966667 26494.2727 Dihydrothymine C5H8N2O2 

18 337.2349649 5.83 25551.76821 Pipecolate C6H11NO2 
19 540.5357826 6.34005 24993.91453 Isoleucine C6H13NO2 

20 149.0224496 4.50395 24497.43798 leucine C6H13NO2 
 

 
 

Fig. 3: Primary m/z identification for metabolite. A: One-to-many statistical chart of metabolite identification, where x-axis represents the 

number of identified metabolites corresponding to one feature, and y-axis is the number of features; B: Approximate categories of 

metabolites identified, where x-axis stands for the metabolite category, y-axis stands for a proportion taken by each category of metabolites 

in all metabolites; C: Classification of KEGG pathways, where x-axis refers to items of KEGG pathway level 2, y-axis refers to the number 

of possible metabolites that involve such classification; D: First 20 pathways in which all possible metabolites may participate 
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regulated and up-regulated substances, respectively (Fig. 6D). 

As a supervised discriminant analytical statistical method, 

PLS-DA has the potential to reveal differences among 

different groups to the greatest extent. By using such method, 

a relation model for metabolite expression quantity and 

sample category was constructed by means of PLS 

regression (PLSR) so that modeling and prediction of sample 

categories can be realized. Additionally, VIP was worked out 

Table 5: Quantitative statistics of metabolites 

 
Mode All feature High quality feature 

POS 4189 3622 
NEG 2739 2389 
Notes: Mode: An ion mode in which the substance is detected under a mass spectrometer; POS: Positive ion mode; NEG: Negative ion mode; All features: The number of 

substances extracted by the XCMS software; High quality feature: The number of ions in a substance with missing value < 80% in the sample or < 50% in the QC sample 

 

 
 

Fig. 4: Quantitative quality control over metabolites. A: CV distribution diagram, where CV=SD/Mean; and, the x-axis represents value 

of CV and the y-axis represents a proportion taken by the number of ions. Generally, it is considered that if CV ≤ 30%, the sample shows 

good repeatability; B: Intensity of each metabolite in each sample is presented in the heat map, where, each scale is obtained by log 

transformation of intensity values; the Euclidean distance is introduced in calculation; and, ward.D2 serves as the clustering method; C: 

Boxplot of intensity distribution evaluation for metabolites in each sample, where, y-axis represents log2 transformation of intensity in the 

mass spectrum; D: A chart of PCA scores, where, each point represents a sample; if the points are rather close to each other, it indicates 

that the samples are very similar; otherwise, it reveals that certain differences can be found among these samples 
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for the purpose of evaluating influential intensity and 

explanatory ability of various metabolite expression patterns 

for sample classification and discrimination. This may 

contribute to screening of metabolic markers (screening 

condition: VIP ≥ 1.0). R
2
 and Q

2
, as two parameters of the 

PLS-DA model, were calculated to be 0.99 and 0.94. The 

closer their values are to 1, the more reliable the PLS-DA 

model will be. On this basis, it is deemed that the relation 

model constructed is rather reliable. 

Differential metabolism analysis: Differential metabolic 

pathway analysis of differential substances and KEGG was 

carried out. Through comparison between FMRMRS and 

DCMRS, 151 differential metabolic pathways were obtained, 

including 76 up-regulated ones and 75 down-regulated ones. 

It was found that some of these metabolic pathways were 

associated with nitrogen cycling (Fig. 7), such as carbon 

metabolic pathway, amino acid metabolic pathway, 

antibiotics anabolism, and biosynthesis of siderophore group 

non-ribosomal peptides. Some differential metabolic 

pathways were in a positive ion mode (Table 6). 

 

Discussion 
 

Red soil containing metallic oxides such as iron and 

aluminum is widely distributed in Yunnan Province, China 

(Huang and Fu 2002; Zhao et al. 2019). Corn is an important 

fodder and food crop of Yunnan. In this study, soil conditions 

are preliminarily evaluated by measuring soil pH and the 

contents of total nitrogen, organic matters, ammonium 

nitrogen, available phosphorus and potassium in DCMRS 

and FMMRS for corns at a milk stage in Dongchuan District 

of Yunnan. Overall, FMMRS is more fertile than DCMRS, 

 
 

Fig. 5: Quantitative information of metabolites in DCMRS and FMMRS. A: An annular chart of the mean intensity of metabolites 

undergoing secondary mass spectrum identification, where the color represents the type of metabolites; B: Correlation of metabolites 

subjected to secondary mass spectrum identification, where correlation between two metabolites is shown; the darker the red is, the 

stronger their correlation will be; but if the blue is darker, the correlation will be weaker; C: Metabolite intensity heat map of secondary 

mass spectrum identification, where color blocks above represent different groups of DCMRS, FMMRS and QC samples, but color 

blocks on the left refer to different types of metabolites; in the middle, each color block represents a metabolite; similarly, darker red 

corresponds to stronger correlation, but darker blue represents weaker correlation 
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but less acidic (Table 1 and Fig. 1). These components in the 

red soil may be produced by fertilizers applied prior to the 

milk stage of corns. For example, chemical fertilizers can 

increase the contents of available phosphorus and available 

potassium in the soil. Moreover, once organic fertilizers (e.g., 

decaying manure from the livestock) are applied, the 

contents of total nitrogen and organic matters in the soil may 

go up (Zhang 2011). 

The source of metabolic substances in rhizosphere soil 

is in exudates of rhizosphere microbes and plant root systems. 

Matters detected by soil metabolomic analysis consist of 

these metabolic substances. Plant root exudates have the 

capability to enhance stress tolerance of plants and promote 

growth of soil microbes (Bashir et al. 2016). According to 

relevant findings, corn root exudates contain asparaginic acid, 

tyrosine, starch and flavonoids (Kuang et al. 2003; 

Carvalhais et al. 2011; Zhu et al. 2016; Luo et al. 2017). In 

this study, amino acid, saccharides and flavonoids were 

detected in root soil DCMRS and FMMRS. The influence of 

soil microbes on rhizosphere soil cannot be ignored either. 

The reason is that microbes are able to produce secondary 

metabolites by using plant root exudates, including 

antibiotics and acids. Through comparison between FMMRS 

and DCMRS, multiple antibiotic synthesis associated 

metabolic pathways have been annotated. In this course, the 

metabolic pathways associated with iron transport were 

observed. In addition, another investigation on 

microbiological compositions in corn rhizosphere soil was 

carried out as well. Likewise, not only were bacteria 

associated with antibiotic synthesis detected, but also 

functional genes and metabolic pathways associated with 

iron element metabolism and transport in soil were also 

found. It is expected that some significant information can be 

provided for improving the soil where corns are planted. The 

pH of DCMRS was lower than of FMMRS. However, if the 

pH value of rhizosphere soil were always low, it would affect 

the accumulation of crop biomass. Before the mature stage 

of corn, alkaline chemical fertilizer can be properly added to 

improve soil pH value, which is more conducive to the 

accumulation of dry matter in corn. Rhizosphere soil 

metabolites affect many aspects of crop growth. Proper 

application of organic fertilizer or microbial soil inoculants 

can improve the content of soil metabolites by adjusting the 

composition of soil microorganisms, thus improving the 

stress resistance and yield of corn. 

 

Conclusion 
 

Concerning the non-targeted metabolome, metabolites in 

samples can be comprehensively analyzed to confirm an 

analytical method for differential metabolites. Under the 

circumstance that massive data are generated during non-

 
 

Fig. 6: Differential metabolite screening. A: A statistical chart of differential metabolites from FMMRS/DCMRS; B: A heat map of 

differential metabolite expression; C: A volcano chart of univariate statistical test evaluation, where x-axis represents intensity values and 

y-axis is log10 (i.e., q-value corrected through statistical testing); D: A diagram of PCA scores from multivariate statistics, where x-axis 

and y-axis respectively refer to the first and the second principal components, that is PC1 and PC2 for short 
Note: In these figures, each point in this figure stands for a sample; the dispersion degrees of two colors represent distrib ution tendencies of samples in two 

groups along PC1 and PC2 axes 
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targeted metabolomic detection, the selected separation and 

detection technique may affect the data. As an analytical 

approach, UPLC-Q/TOF-MS is featured with high 

sensitivity and high through-put. Therefore, it is adopted in 

this study to detect and analyze metabolites in DCMRS and 

FMMRS. As an extraction solvent exerting a great influence 

on leaching of metabolites from the samples, methanol-

water was adopted in this study to extract most water-

soluble and fat-soluble substances from the samples. 

Although, these substances can largely reveal components 

of metabolites in the soil, errors caused by the detection 

technique or calculations may lead to data loss to a certain 

extent. To solve such a defect, new detection techniques and 

calculation methods are needed in the future research with 

the goal of reducing errors. 
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